N 4 4 Equilibrium \leftrightarrow Constant & Quotient

N44 Equilibrium Constant & Quotient

Target: I can mathematically determine if a reaction is at equilibrium or not.

Link to YouTube Presentation: https://youtu.be/stWybrjoM3w

PRODUCT OR REACTANT FAVORED?

Once equilibrium is reached, you may have more products present, or you may have more

reactants present.

PRODUCT FAVORED OR REACTANT FAVORED?

 K_{eq} is a value (with no units) that allows us to determine if more products or reactants are being made. It is a ratio of products to reactants.

SIMPLIFIED VERSION FIRST: $K_{eq} = \frac{1}{[Reactants]}$

- K > 1 then more products!
- K < 1 then more reactants!

CALCULATING K_{eq}

• The **"Law of Mass Action"** will allow us to calculate K_{eq} – **Ratio of Products over Reactants**

$$aA + bB \leftrightarrow cC + dD$$
$$K_{eq} = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Still simplified, there is an additional part that we wont use that helps "fix" the units so Keq can have no units. Don't worry about it! * **Remember** how solids and liquids don't factor into equilibrium? They don't have true concentrations so there is nowhere to plug them into this equation is there!

PRACTICE PROBLEM:

• Write the equilibrium expression for the reaction: $2NO_{2(g)} \leftrightarrow 2NO_{(g)} + O_{2(g)}$

$$K_{eq} = \frac{[NO]^2 [O_2]^1}{[NO_2]^2}$$

$$K_{eq} = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Equilibrium expression is the same thing as the Law of Mass Action! \odot

ASSUME FORWARD REACTION....BUT WHAT IF ASKED FOR BACKWARDS RXN?

• Just flip it! Write K as K' for backwards reaction. $2NO_{2(g)} \leftrightarrow 2NO_{(g)} + O_{2(g)}$

$$K'_{eq} = \frac{[NO_2]^2}{[NO]^2[O_2]^1}$$

 $= \frac{1}{K_{eq}}$

Don't even bother writing the equation flipped! Just flip your Law of Mass Action!

WHAT IF I HAVE PRESSURES NOT []?

• Just use <u>partial pressures</u> the same way you use concentrations!

$$aA + bB \leftrightarrow cC + dD$$

 $K_{eq} = rac{(PC)^c (PD)^d}{(PA)^a (PB)^b}$

HOW CAN YOU TELL IF IT IS AT Equilibrium or Not?

 Calculate the values you have, and compare them to the K_{eq} value

- Reaction Quotient

is what it is called if it isn't at equilibrium

 $aA + bB \leftrightarrow cC + dD$ $Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

SO WHAT DOES Q TELL YOU?

- K = Q then you are at equilibrium!
- K < Q you have too many products!
 - SHIFT LEFT until you make enough reactants to get back to equilibrium
 - -Reverse reaction will proceed faster until at equilibrium!
- K > Q you have too many reactants!
 - SHIFT RIGHT until you make enough product to get back to equilibrium
 - -Forward reaction will proceed faster until at equilibrium!

WHY DO WE CARE ABOUT K_{eq} ?

Knowing K_{eq} allows you to solve for:

- -Which combos of []s would reach an equilibrium position
- -Whether or not your given []s are at an equilibrium point by comparing to Q
 - If you can compare K and Q then you can predict which way it needs to shift to reach equilibrium

PRACTICE PROBLEM

Given the equation $X(g) \leftrightarrow Y(g) + 2 Z(g)$. At a particular temperature, $K = 1.4 \times 10^3$. If you mixed 1.2 mol Y, 0.070 mol Z, and 0.003 mol X in a 1-L container, in which direction would the reaction initially proceed? $Q = \frac{[1.2]^{1}[0.070]^{2}}{[0.003]^{1}} = 1.96$ $Q = \frac{[Y]^1 [Z]^2}{[X]^1}$

> K = 1.4 x 103 > Q = 1.96Q is too small - Not enough products! Shift to the RIGHT!

THINGS THAT CHANGE K_{EQ}

These things DON'T CHANGE K_{eq}

- -Changing Concentrations
- -Changing Pressures
- -Adding Solids or Liquids
- -Adding Catalysts

These things DO CHANGE K_{eq}

-Temperature

EQUILIBRIUM CONSTANT VERSUS "EQUILIBRIUM POINT"

- The constant, Keq, is the actual NUMBER you get from your Law of Mass Action.
 - -ONE Keq PER TEMPERATURE!
- The "Equilibrium Point" is the <u>combination</u> of SPECIFIC CONCENTRATIONS you plug in that get you the Keq number for that temperature.
 - -LOTS of combinations that can get you Keq per temperature

EQUILIBRIUM CONSTANT VERSUS "EQUILIBRIUM POINT"

 $\frac{2}{1} = 2$ K = 2

 $\frac{4}{2} = 2$ Lots of different "equilibrium points" will get you that same number!

 $\frac{100}{50} = 2$

CAN IT CHANGE ANYTHING?

Factor	Rate of Reaction	Rate Constant k	Equilibrium Point	Equilibrium Constant Keq
Δ[]		X		X
Δ Pressure		X		X
Δ Surface Area	\checkmark	X	×	X
Δ Amount of s/l	X	X	×	X
Inert Gas	X	X	×	X
Catalyst	\checkmark	\checkmark	×	X
Temperature	\checkmark	\checkmark		\checkmark

YOUTUBE LINK TO PRESENTATION

<u>https://youtu.be/stWybrjoM3w</u>